Pedestrian Behavior Understanding and Prediction with Deep Neural Networks

نویسندگان

  • Shuai Yi
  • Hongsheng Li
  • Xiaogang Wang
چکیده

In this paper, a deep neural network (Behavior-CNN) is proposed to model pedestrian behaviors in crowded scenes, which has many applications in surveillance. A pedestrian behavior encoding scheme is designed to provide a general representation of walking paths, which can be used as the input and output of CNN. The proposed Behavior-CNN is trained with real-scene crowd data and then thoroughly investigated from multiple aspects, including the location map and location awareness property, semantic meanings of learned filters, and the influence of receptive fields on behavior modeling. Multiple applications, including walking path prediction, destination prediction, and tracking, demonstrate the effectiveness of Behavior-CNN on pedestrian behavior modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pedestrian Prediction by Planning using Deep Neural Networks

Accurate traffic participant prediction is the prerequisite for collision avoidance of autonomous vehicles. In this work, we predict pedestrians by emulating their own motion planning. From online observations, we infer a mixture density function for possible destinations. We use this result as the goal states of a planning stage that performs motion prediction based on common behavior patterns...

متن کامل

An adaptive estimation method to predict thermal comfort indices man using car classification neural deep belief

Human thermal comfort and discomfort of many experimental and theoretical indices are calculated using the input data the indicator of climatic elements are such as wind speed, temperature, humidity, solar radiation, etc. The daily data of temperature، wind speed، relative humidity، and cloudiness between the years 1382-1392 were used. In the First step، Tmrt parameter was calculated in the Ray...

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Prediction the Return Fluctuations with Artificial Neural Networks' Approach

Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...

متن کامل

Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks

Robust vision-based pedestrian detection is a crucial feature of future autonomous systems. Thermal cameras provide an additional input channel that helps solving this task and deep convolutional networks are the currently leading approach for many pattern recognition problems, including object detection. In this paper, we explore the potential of deep models for multispectral pedestrian detect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016